Наука и Техника

Искусственный интеллект создал нейросеть

Дожили до того момента, когда искусственный интеллект создаёт собственную нейросеть. Хотя многие думают, что это одно и тоже. Но на самом деле не всё так просто и сейчас мы попробуем разобраться что это такое и кто кого может создать.

Инженеры из подразделения Google Brain весной текущего года продемонстрировали AutoML. Этот искусственный интеллект умеет без участия человека производить собственные уникальнейшие ИИ. Как выяснилось совсем недавно, AutoML смог впервые создать NASNet, систему компьютерного зрения. Данная технология серьёзно превосходит все созданные ранее людьми аналоги. Эта основанная на искусственном интеллекте система может стать отличной помощницей в развитии, скажем, автономных автомобилей. Применима она и в робототехнике – роботы смогут выйти на абсолютно новый уровень.

Развитие AutoML проходит по уникальной обучающей системе с подкреплением. Речь идёт о нейросети-управленце, самостоятельно разрабатывающей абсолютно новые нейросети, предназначенные для тех или иных конкретных задач. В указанном нами случае AutoML имеет целью производство системы, максимально точно распознающей в реальном времени объекты в видеосюжете.

Искусственный интеллект сам смог обучить новую нейронную сеть, следя за ошибками и корректируя работу. Обучающий процесс повторялся многократно (тысячи раз), до тех пор, пока система не оказалась годной к работе. Любопытно, что она смогла обойти любые аналогичные нейросети, имеющиеся в настоящее время, но разработанные и обученные человеком.

При этом AutoML оценивает работу NASNеt и использует эту информацию для улучшения дочерней сети; этот процесс повторяется тысячи раз. Когда инженеры протестировали NASNet на наборах изображений ImageNet и COCO, она превзошла все существующие системы компьютерного зрения.

В Google официально заявили, что NASNet распознаёт с точностью равной 82,7%. Результат на 1.2 % превышает прошлый рекорд, который в начале осени нынешнего года установили исследователи из фирмы Momenta и специалисты Оксфорда. NASNet на 4% эффективнее своих аналогов со средней точностью в 43,1%.

Есть и упрощённый вариант NASNet, который адаптирован под мобильные платформы. Он превосходит аналоги чуть больше, чем на три процента. В скором будущем можно будет использовать данную систему для производства автономных автомобилей, для которых важно наличие компьютерного зрения. AutoML же продолжает производить новые потомственные нейросети, стремясь к покорению ещё больших высот.

При этом, конечно, возникают этические вопросы, связанные с опасениями по поводу ИИ: что, если AutoML будет создавать системы с такой скоростью, что общество просто за ними не поспеет? Впрочем, многие крупные компании стараются учитывать проблемы безопасности ИИ. Например, Amazon, Facebook, Apple и некоторые другие корпорации являются членами Партнерства по развитию ИИ (Partnership on AI to Benefit People and Society). Институт инженеров и электротехники (IEE) же предложил этические стандарты для ИИ, а DeepMind, например, анонсировал создание группы, которая будет заниматься моральными и этическими вопросами, связанными с применениями искусственного интеллекта.

Впрочем, многие крупные компании стараются учитывать проблемы безопасности ИИ. При этом, конечно, возникают этические вопросы, связанные с опасениями по поводу ИИ: что, если AutoML будет создавать системы с такой скоростью, что общество просто за ними не поспеет? Институт инженеров и электротехники (IEE) же предложил этические стандарты для ИИ, а DeepMind, например, анонсировал создание группы, которая будет заниматься моральными и этическими вопросами, связанными с применениями искусственного интеллекта. Например, Amazon, Facebook, Apple и некоторые другие корпорации являются членами Партнерства по развитию ИИ (Partnership on AI to Benefit People and Society).

Что такое искусственный интеллект?

Автором термина «искусственный интеллект» является Джон Маккарти, изобретатель языка Лисп, основоположник функционального программирования и лауреат премии Тьюринга за огромный вклад в области исследований искусственного интеллекта.
Искусственный интеллект — это способ сделать компьютер, компьютер-контролируемого робота или программу способную также разумно мыслить как человек.

Исследования в области ИИ осуществляются путем изучения умственных способностей человека, а затем полученные результаты этого исследования используются как основа для разработки интеллектуальных программ и систем.

Что такое нейронная сеть?

Идея нейросети заключается в том, чтобы собрать сложную структуру из очень простых элементов. Вряд ли можно считать разумным один-единственный участок мозга — а вот люди обычно на удивление неплохо проходят тест на IQ. Тем не менее до сих пор идею создания разума «из ничего» обычно высмеивали: шутке про тысячу обезьян с печатными машинками уже сотня лет, а при желании критику нейросетей можно найти даже у Цицерона, который ехидно предлагал до посинения подбрасывать в воздух жетоны с буквами, чтобы рано или поздно получился осмысленный текст. Однако в XXI веке оказалось, что классики ехидничали зря: именно армия обезьян с жетонами может при должном упорстве захватить мир.
На самом деле нейросеть можно собрать даже из спичечных коробков: это просто набор нехитрых правил, по которым обрабатывается информация. «Искусственным нейроном», или перцептроном, называется не какой-то особый прибор, а всего лишь несколько арифметических действий.

Работает перцептрон проще некуда: он получает несколько исходных чисел, умножает каждое на «ценность» этого числа (о ней чуть ниже), складывает и в зависимости от результата выдаёт 1 или –1. Например, мы фотографируем чистое поле и показываем нашему нейрону какую-нибудь точку на этой картинке — то есть посылаем ему в качестве двух сигналов случайные координаты. А затем спрашиваем: «Дорогой нейрон, здесь небо или земля?» — «Минус один, — отвечает болванчик, безмятежно разглядывая кучевое облако. — Ясно же, что земля».

«Тыкать пальцем в небо» — это и есть основное занятие перцептрона. Никакой точности от него ждать не приходится: с тем же успехом можно подбросить монетку. Магия начинается на следующей стадии, которая называется машинным обучением. Мы ведь знаем правильный ответ — а значит, можем записать его в свою программу. Вот и получается, что за каждую неверную догадку перцептрон в буквальном смысле получает штраф, а за верную — премию: «ценность» входящих сигналов вырастает или уменьшается. После этого программа прогоняется уже по новой формуле. Рано или поздно нейрон неизбежно «поймёт», что земля на фотографии снизу, а небо сверху, — то есть попросту начнёт игнорировать сигнал от того канала, по которому ему передают x-координаты. Если такому умудрённому опытом роботу подсунуть другую фотографию, то линию горизонта он, может, и не найдёт, но верх с низом уже точно не перепутает.

В реальной работе формулы немного сложнее, но принцип остаётся тем же. Перцептрон умеет выполнять только одну задачу: брать числа и раскладывать по двум стопкам. Самое интересное начинается тогда, когда таких элементов несколько, ведь входящие числа могут быть сигналами от других «кирпичиков»! Скажем, один нейрон будет пытаться отличить синие пиксели от зелёных, второй продолжит возиться с координатами, а третий попробует рассудить, у кого из этих двоих результаты ближе к истине. Если же натравить на синие пиксели сразу несколько нейронов и суммировать их результаты, то получится уже целый слой, в котором «лучшие ученики» будут получать дополнительные премии. Таким образом достаточно развесистая сеть может перелопатить целую гору данных и учесть при этом все свои ошибки.

Нейронную сеть можно сделать с помощью спичечных коробков — тогда у вас в арсенале появится фокус, которым можно развлекать гостей на вечеринках. Редакция МирФ уже попробовала — и смиренно признаёт превосходство искусственного интеллекта. Давайте научим неразумную материю играть в игру «11 палочек». Правила просты: на столе лежит 11 спичек, и в каждый ход можно взять либо одну, либо две. Побеждает тот, кто взял последнюю. Как же играть в это против «компьютера»?

Очень просто.

Берём 10 коробков или стаканчиков. На каждом пишем номер от 2 до 11.

Кладём в каждый коробок два камешка — чёрный и белый. Можно использовать любые предметы — лишь бы они отличались друг от друга. Всё — у нас есть сеть из десяти нейронов!

Нейросеть всегда ходит первой. Для начала посмотрите, сколько осталось спичек, и возьмите коробок с таким номером. На первом ходу это будет коробок №11. Возьмите из нужного коробка любой камешек. Можно закрыть глаза или кинуть монетку, главное — действовать наугад.
Если камень белый — нейросеть решает взять две спички. Если чёрный — одну. Положите камешек рядом с коробком, чтобы не забыть, какой именно «нейрон» принимал решение. После этого ходит человек — и так до тех пор, пока спички не закончатся.

Ну а теперь начинается самое интересное: обучение. Если сеть выиграла партию, то её надо наградить: кинуть в те «нейроны», которые участвовали в этой партии, по одному дополнительному камешку того же цвета, который выпал во время игры. Если же сеть проиграла — возьмите последний использованный коробок и выньте оттуда неудачно сыгравший камень. Может оказаться, что коробок уже пустой, — тогда «последним» считается предыдущий походивший нейрон. Во время следующей партии, попав на пустой коробок, нейросеть автоматически сдастся.

Вот и всё! Сыграйте так несколько партий. Сперва вы не заметите ничего подозрительного, но после каждого выигрыша сеть будет делать всё более и более удачные ходы — и где-то через десяток партий вы поймёте, что создали монстра, которого не в силах обыграть.
Источник

По теме:

Комментарий

* Используя эту форму, вы соглашаетесь с хранением и обработкой введенных вами данных на этом веб-сайте.