Промышленность

Реактор на быстрых нейтронах БН-800 вышел на уровень мощности 880 МВт

Уникальный российский реактор на быстрых нейтронах, работающий на Белоярской АЭС, вывели на мощность 880 мегаватт — об этом сообщает пресс-служба Росатома.

Реактор работает на энергоблоке № 4 Белоярской АЭС и сейчас проходят плановые испытания генерирующего оборудования. В соответствии с программой испытаний энергоблок обеспечивает в течение 8 часов поддержание электрической мощности на уровне не ниже 880 мегаватт.

Мощность реактора поднимается поэтапно, для того что бы в итоге по результатам испытаний получить аттестацию на проектном уровне мощности в 885 мегаватт. На данный момент реактор аттестован на мощность 874 мегаватта.

Напомним, что на Белоярской АЭС работает два реактора на быстрых нейтронах. С 1980 года здесь работает реактор БН-600 — долгое время он был единственным в мире реактором этого типа. Но в 2015 году начался поэтапный запуск второго реактора БН-800.

Почему это так важно и считается историческим событием для мировой атомной отрасли?

Реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл (в БН-600 в настоящее время он не реализован). Поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. А поскольку в уран-плутониевом цикле плутония образуется больше, чем распалось, излишек топлива можно использовать для новых реакторов.

Более того, этим способом можно перерабатывать излишки оружейного плутония, а также плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). При этом количество радиоактивных отходов по сравнению с тепловыми реакторами уменьшается более чем в двадцать раз.

Почему же при всех своих достоинствах реакторы на быстрых нейтронах не получили широкого распространения? В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии – от экзотических свинцово-висмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС).

«В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах, – объясняет «ПМ» главный инженер Белоярской АЭС Михаил Баканов. – Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному ‘распуханию’. С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, – оно лишь чуть выше атмосферного».

По словам Михаила Баканова, в первые годы эксплуатации основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы – как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. И мы, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Мы их успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен».

«Проблемы действительно были одни и те же, – добавляет директор Белоярской АЭС Николай Ошканов, – но вот решали их у нас и во Франции различными способами. Например, когда на Phenix погнулась головная часть одной из сборок, чтобы захватить и выгрузить ее, французские специалисты разработали сложную и довольно дорогую систему ‘видения’ сквозь слой натрия. А когда такая же проблема возникла у нас, один из наших инженеров предложил использовать видеокамеру, помещенную в простейшую конструкцию типа водолазного колокола,– открытую снизу трубу с поддувом аргона сверху. Когда расплав натрия был вытеснен, операторы с помощью видеосвязи смогли навести захват механизма, и гнутая сборка была успешно извлечена».

Активная зона реактора на быстрых нейтронах устроена подобно луковице, слоями

370 топливных сборок образуют три зоны с различным обогащением по урану-235 – 17, 21 и 26% (изначально зон было только две, но, чтобы выровнять энерговыделение, сделали три). Они окружены боковыми экранами (бланкетами), или зонами воспроизводства, где расположены сборки, содержащие обедненный или природный уран, состоящий в основном из изотопа 238. В торцах ТВЭЛов выше и ниже активной зоны также расположены таблетки из обедненного урана, которые образуют торцевые экраны (зоны воспроизводства).

Тепловыделяющие сборки (ТВС) представляют собой собранный в одном корпусе набор тепловыделяющих элементов (ТВЭЛов) – трубочек из специальной стали, наполненных таблетками из оксида урана с различным обогащением. Чтобы ТВЭЛы не соприкасались между собой, и между ними мог циркулировать теплоноситель, на трубочки навивают тонкую проволоку. Натрий поступает в ТВС через нижние дросселирующие отверстия и выходит через окна в верхней части.

В нижней части ТВС расположен хвостовик, вставляемый в гнездо коллектора, в верхней – головная часть, за которую сборку захватывают при перегрузке. Топливные сборки различного обогащения имеют различные посадочные места, поэтому установить сборку на неправильное место просто невозможно.

Для управления реактором используется 19 компенсирующих стержней, содержащих бор (поглотитель нейтронов) для компенсации выгорания топлива, 2 стержня автоматического регулирования (для поддержания заданной мощности), а также 6 стержней активной защиты. Поскольку собственный нейтронный фон у урана мал, для контролируемого запуска реактора (и управления на малых уровнях мощности) используется «подсветка» – фотонейтронный источник (гамма-излучатель плюс бериллий).

Энергоблоки с реакторами на быстрых нейтронах могут существенно расширить топливную базу атомной энергетики и минимизировать радиоактивные отходы за счет организации замкнутого ядерно-топливного цикла. Подобными технологиями обладают лишь некоторые страны, и РФ, по признанию экспертов, является мировым лидером в этой области.

Реактор БН-800 (от «быстрый натриевый», электрической мощностью 880 мегаватт) — опытно-промышленный реактор на быстрых нейтронах с жидкометаллическим теплоносителем, натрием. Он должен стать прототипом коммерческих, более мощных энергоблоков с реакторами БН-1200.

Источник

По теме:

Комментарий

* Используя эту форму, вы соглашаетесь с хранением и обработкой введенных вами данных на этом веб-сайте.