Наука и Техника

Почему современные моторы ломаются чаще старых и проверенных?

Признайтесь, слышали такую байку. Чем двигатель более современен, тем он более «одноразовый». Современные двигатели имеют малый ресурс и становятся все менее надежными. Не имею личного опыта подтвердить эту мысль. Несколько лет владел 20-ти летней Daewoo Nexia — к двигателю претензии нет. Сейчас Шкода с классическим MPI Фольксвагена — все как часы.

А ведь по логике с развитием техники и технологий моторы должны становиться все надежнее и надежнее, но по какой-то причине этого не происходит. У них создается впечатление, что мы наблюдаем обратную тенденцию. Теория заговоров?

Какие же у них аргументы?

 

Проблема первая. Техническое усложнение

Наверное, корнем всех бед являются ужесточающиеся требования к расходу топлива и экологичности двигателей при отсутствии новых идей и конструкций. По сути, все «новшества», которые мы видим, — это компрессоры, турбонаддув, непосредственный впрыск, изменяемые фазы ГРМ и многоклапанные конструкции. Все это, вообще-то, появилось еще в пятидесятые-шестидесятые годы, а большая часть технологий начала развиваться еще в двадцатые-тридцатые годы (как не вспомнить тут любимый верхушкой Третьего Рейха наддувный Mercedes-Benz 770K начала 30-х).

autowp.ru_mercedes-benz_770_grand_mercedes_1.jpeg

Великим движителем прогресса поршневых моторов в первой половине 20-го века стала авиация, которая сильно ускорила работы по впрыску, всем видам наддува и многоклапанным конструкциям. На земле эти технологии применялись куда менее широко: в гоночных моторах и на отдельных особо прогрессивных машинах, но массовое их использование стало возможным только с появлением дешевой и надежной электроники в начале 90-х годов. Тогда же законодательно обязали автопроизводителей поддерживать определенные темпы снижения расхода топлива и стали ужесточать нормы выброса вредных веществ. Поначалу хватало внедрения безусловно прогрессивных технологий. Многоклапанные головки блоков цилиндров быстро вытеснили двухклапанные конструкции в первую очередь потому, что даже без катализатора выхлоп такого мотора был чище.


5cGacNPlYAs.jpg

Разумеется, тут же резко возросло количество деталей в механизме ГРМ и трудоемкость его обслуживания. Но прогресс в металлообработке позволил усложнить мотор почти без потерь. Переход на электронный впрыск топлива и интегрированные системы управления двигателем, которые позволяли свести воедино управление впрыском, зажиганием, трансмиссией, сервисными процедурами мотора, тоже, безусловно, был прорывом. Он значительно улучшил характеристики двигателей и увеличил надежность. Хотя многие помнят недоверие, которым одаривали первые впрысковые машины и советы многоопытных «гаражников», предупреждавших о том, как сложно чинить такие системы (то ли дело простой карбюратор!). История расставила все по своим местам: системы впрыска оказались надежнее старых систем питания, хотя «на коленке» отремонтировать сложную технику действительно стало куда сложнее. Следующая технология, которую массово внедрили на всех ДВС, — это система изменения фаз ГРМ: VANOS на BMW,VVT-i на Toyota, i-VTEC на Honda и т.п. Если грубо, то она позволяла смещать время открытия и закрытия впускных и выпускных клапанов, в зависимости от оборотов мотора, чтобы обеспечивать хорошую тягу и на малых, и на больших оборотах. Иными словами, она позволила улучшить мощностные характеристики моторов, не ухудшая экономичности.


abt_volkswagen_golf_gti_3-door_2.jpeg


По сути, не очень сложная в реализации конструкция, она оказалась слишком новой, и у многих производителей отнюдь не беспроблемной: появились новые изнашиваемые детали и новая головная боль у владельцев таких машин. Например, стуки на холодную, поломки и сбои систем. Далее было массовое внедрение турбонаддува. Он позволил использовать «лазейку» в европейском и японском ездовых циклах замера расхода топлива и снизить паспортный расход топлива, одновременно сильно улучшив динамические параметры машин. Разумеется, автомобили с турбонаддувом значительно сложнее в эксплуатации, чем с атмосферными моторами, они боятся даже незначительных нарушений в работе всех систем. Последняя технология, которая постепенно внедряется массово, — непосредственный впрыск топлива. Он заметно повышает возможности двигателя, но и требует применения сложных компонентов с ограниченным ресурсом и очень уязвимых в силу точной конструкции и жестких условий работы. И, помимо увеличения вероятности выхода из строя, также увеличивает цену ремонта.


Depositphotos_7428450_original.jpg

Но применение этих старых технологий в общем-то не было проблемой, во многом они были отработаны задолго до массового внедрения на гоночных моторах. При переходе к массовому производству бывали и ошибки с просчетами, но в целом это прогрессивные технологии. Просто их пришлось внедрять слишком быстро и слишком массово, чтобы вписаться в рамки законов. Только темпы роста экономичности не успевали за ужесточением требований.

Проблема вторая. Снижение потерь на трение

Вскоре появились признаки переусложнения вроде систем бездроссельного впуска и явные потуги на уменьшение внутреннего трения — по факту, за счет снижения надежности узлов. Меньше трения — выше КПД, но какой ценой? В первую очередь множество подшипников скольжения в моторе попросту уменьшили в размерах. Уменьшились размеры шеек коленвалов, поршневых пальцев, вкладыши балансирных валов, размеры распредвалов и звеньев цепей… Разумеется, металлурги выдавали новые сплавы, и детали стали прочнее. Только не везде и не во всем. Моторы стали намного хуже переносить перегрузки. Чтобы еще больше снизить потери на трение в подшипниках и затраты энергии на смазку, стали использовать все более жидкие масла и уменьшать давление масла в системе.


V8.jpg


К сожалению, чудес не бывает: более жидкое масло имеет менее стойкую к нагрузкам пленку, а управляемый масляный насос не только сложнее, он еще и не обеспечивает запаса по давлению на самых распространенных режимах работы двигателя.

Проблема третья. Увеличение рабочей температуры

Вдобавок для повышения экологичности и экономичности на малой нагрузке попытались увеличить рабочую температуру мотора. А чтобы не потерять в мощности, ввели управляемые термостаты, которые позволяли двигателю немного остывать под нагрузкой. Вот только повышение температур самым негативным образом сказалось на темпах износа масла, старении пластиковых и резиновых деталей мотора… В общем, хлопот добавилось. К тому же управляемый термостат не может моментально уменьшить температуру мотора, и часто температура под нагрузкой тоже выше оптимальной, что вызывает детонацию и ускорение износа. И да, масло стали менять реже, а вот прорыва в технологиях его производства тоже не свершилось, впрочем, это было темой отдельных двух статей.


апвапвы.jpg

Проблема четвертая. Облегчение поршневой группы

Остальные причины снижения надежности, которые мы опишем ниже, так или иначе связаны с основным фактором. Но вместе с тем могли бы развиваться и без его учета. Передача контроля над процессом сгорания топлива электронике с обратной связью позволила заметно облегчить поршневую группу и многие другие части двигателя за счет отказа от «запаса надежности», который требовался на случай каких-либо сбоев в работе более простых систем контроля. К сожалению, электроника невечна и не всегда корректно диагностирует ошибки в своей работе. А запас «железа» по надежности уже стал меньше, и незначительное отклонение параметров от нормы уже может привести к выходу деталей из строя.


Depositphotos_41675907_original.jpg

Знаете, сколько сил выдавал 1.8-литровый мотор VW Golf 1984 года? 90 — с карбюратором, 105-115 — с впрыском на GTI. Вполне «овощные» параметры, по нынешним меркам. Моторы 1.8 серии EA888 сейчас имеют мощность в 182 силы, а прирост крутящего момента и вовсе двукратный. Внедрение всех новых технологий позволило создать моторы со степенью форсирования, превышающей параметры гоночных ДВС тридцатилетней давности. А любое увеличение нагрузки и температур влечет за собой ускорение старения металлов и уменьшение ресурса в целом.

Проблема пятая. Нехватка времени на полноценные испытания моторов

Если «запас надежности» и был у узлов, то его до выбрали почти до конца. Резкое ускорение роста требований заставило автопроизводителей, особенно из числа лидеров премиального сегмента, отказаться от практики постепенного внедрения новшеств в старые моторы и постепенного улучшения конструкции. Серии двигателей теперь часто меняются два раза за короткую жизнь модели в производстве. Разумеется, сокращаются и время тестирования, и число тестов, проведенных с новыми моторами. Большую часть тестов выполняют на компьютерах, а программное обеспечение, как вы все знаете, часто имеет ошибки. В результате выходят в свет явно недоработанные конструкции, проблемы которых исправляют уже «в процессе». Так что пять-шесть регламентных замен типов форсунок и материалов вкладышей, поршневых колец и поршневых групп — это лишь плата за то, что мотор вашей машины самый «прогрессивный».

Проблема шестая. Более редкое проведении ТО и сложность диагностики

Если попробовать заглянуть под капот современной машины, а потом под капот «янгтаймера» из девяностых, то будет хорошо заметно, насколько компактнее стали моторы и насколько плотнее их стали вписывать в моторный отсек. Возить воздух никто не хочет, а требования к росту внутреннего пространства при сохранении внешней компактности машины только возросли со временем.


autowp.ru_toyota_prius_1.jpg


Иногда это сопровождается явным переусложнением узлов или ухудшением условий их работы. Но в любом случае влечет за собой увеличение сложности и времени затрачиваемого на диагностику. Сервису приходится больше полагаться на электронные системы самодиагностики и меньше — на визуальный контроль и подключение дополнительных приборов контроля. К тому же сервисные процедуры стали проводить реже, а значит, и возможностей для выявления проблем на ранней стадии становится меньше.

Проблема седьмая. Неблагоприятные условия работы

И последним фактором, наверное, является увеличение средней нагрузки на двигатель. Новые автоматические трансмиссии создаются для снижения расхода топлива, а значит, они заставляют мотор работать в режимах с максимальной нагрузкой на данных оборотах. Все это экономит топливо, но не всегда безвредно для агрегатов. Новые АКПП позволяют легко и беззаботно использовать всю мощность мотора, а снижение шумности агрегатов делают процесс приятным и легким. Расплата, как всегда, надежностью.


bmw_m21_d24_(turbo)_1.jpeg


Что в итоге?

Каждая из причин по отдельности погоды не делает, но в сумме они создают ощущение постоянных проблем с моторами у многих новых машин. У более консервативных производителей меньше, у самых прогрессивных — больше. На самом деле число отказов в гарантийный срок в целом снижается, и это следствие работы систем контроля качества. Теперь у автокомпаний есть возможность контролировать ресурс, не закладывать излишний запас надежности, если число гарантийных проблем не превышает разумный уровень, и вовремя исправлять ошибки проблемных серий моторов или снимать их с производства, если малыми силами исправить ситуацию не получается. К сожалению, все, что за пределами сроков гарантии «и еще немножко», уже вне интересов концернов. Может оказаться так, что после гарантии проездит машина недолго и ремонт будет очень дорогим, крупноблочным и с привлечением специального инструмента. А пока покупатель может наслаждаться новой машиной — все же она быстрее и экономичнее. Причем разница в стоимости сэкономленного топлива зачастую может даже превысить возросшие траты на ремонт моторов в будущем.

Источник

По теме:

Комментарий

* Используя эту форму, вы соглашаетесь с хранением и обработкой введенных вами данных на этом веб-сайте.